
CS/ECE/ISyE 524 Introduction to Optimization Spring 2017–18

25. NLP algorithms

� Overview

� Local methods

� Constrained optimization

� Global methods

� Black-box methods

� Course wrap-up

Laurent Lessard (www.laurentlessard.com)

www.laurentlessard.com

Review of algorithms

Studying Linear Programs, we talked about:

� Simplex method: traverse the surface of the feasible
polyhedron looking for the vertex with minimum cost. Only
applicable for linear programs. Used by solvers such as Clp

and CPLEX. Hybrid versions used by Gurobi and Mosek.

� Interior point methods: traverse the inside of the
feasible polyhedron and move towards the boundary point
with minimum cost. Applicable to many different types of
optimization problems. Used by SCS, ECOS, Ipopt.

25-2

Review of algorithms

Studying Mixed Integer Programs, we talked about:

� Cutting plane methods: solve a sequence of LP
relaxations and keep adding cuts (special extra linear
constraints) until solution is integral, and therefore optimal.
Also applicable for more general convex problems.

� Branch and bound methods: solve a sequence of LP
relaxations (upper bounding), and branch on fractional
variables (lower bounding). Store problems in a tree, prune
branches that aren’t fruitful. Most optimization problems
can be solved this way. You just need a way to branch (split
the feasible set) and a way to bound (efficiently relax).

� Variants of methods above are used by all MIP solvers.

25-3

Overview of NLP algorithms

To solve Nonlinear Programs with continuous variables,
there is a wide variety of available algorithms. We’ll assume
the problem has the standard form:

minimize
x

f0(x)

subject to: fi(x) ≤ 0 for i = 1, . . . ,m

� What works best depends on the kind of problem you’re
solving. We need to talk about problem categories.

25-4

Overview of NLP algorithms

1. Are the functions differentiable? Can we efficiently
compute gradients or second derivatives of the fi?

2. What problem size are we dealing with? a few variables and
constraints? hundreds? thousands? millions?

3. Do we want to find local optima, or do we need the global
optimum (more difficult!)

4. Does the objective function have a large number of local
minima? or a relatively small number?

Note: items 3 and 4 don’t matter if the problem is convex.
In that case any local minimum is also a global minimum!

25-5

Survey of NLP algorithms

� Local methods using derivative information. It’s what most
NLP solvers use (and what most JuMP solvers use).

I unconstrained case

I constrained case

� Global methods

� Derivative-free methods

25-6

Local methods using derivatives

Let’s start with the unconstrained case:

minimize
x

f (x)

cheap expensive

sl
ow

fa
st

Many methods
available!

Stochastic gradient descent

Gradient descent

Accelerated methods

Conjugate gradient

Quasi-Newton methods

Newton’s method

25-7

Iterative methods

Local methods iteratively step through the space looking for
a point where ∇f (x) = 0.

1. pick a starting point x0.

2. choose a direction to move in ∆k . This is the part where
different algorithms do different things.

3. update your location xk+1 = xk + ∆k

4. repeat until you’re happy with the function value or the
algorithm has ceased to make progress.

25-8

Vector calculus

Suppose f : Rn → R is a twice-differentiable function.

� The gradient of f is a function ∇f : Rn → Rn defined by:[
∇f
]
i

=
∂f

∂xi

∇f (x) points in the direction of greatest increase of f at x .

� The Hessian of f is a function ∇2f : Rn → Rn×n where:[
∇2f

]
ij

=
∂2f

∂xi∂xj

∇2f (x) is a matrix that encodes the curvature of f at x .

25-9

Vector calculus

Example: suppose f (x , y) = x2 + 3xy + 5y 2 − 7x + 2

� ∇f =

[
∂f
∂x

∂f
∂y

]
=

[
2x + 3y − 7

3x + 10y

]

� ∇2f =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

]
=

[
2 3
3 10

]

Taylor’s theorem in n dimensions

f (x) ≈

best linear approximation︷ ︸︸ ︷
f (x0) +∇f (x0)T(x − x0) +

1

2
(x − x0)T∇2f (x0)(x − x0)︸ ︷︷ ︸

best quadratic approximation

+ · · ·

25-10

Gradient descent

� The simplest of all iterative methods. It’s a first-order
method, which means it only uses gradient information:

xk+1 = xk − tk∇f (xk)

� −∇f (xk) points in the direction of local steepest decrease
of the function. We will move in this direction.

� tk is the stepsize. Many ways to choose it:

I Pick a constant tk = t

I Pick a slowly decreasing stepsize, such as tk = 1/
√
k

I Exact line search: tk = arg mint f (xk − t∇f (xk)).

I A heuristic method (most common in practice).
Example: backtracking line search.

25-11

Gradient descent

We can gain insight into the effectiveness of a method by
seeing how it performs on a quadratic: f (x) = 1

2
xTQx . The

condition number κ := λmax(Q)
λmin(Q)

determines convergence.

5 0 5

2

1

0

1

2
Optimal step
Shorter step
Even shorter

100 101 102 103

number of iterations

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

d
is

ta
n
ce

 t
o
 o

p
ti

m
a
l
p
o
in

t

Optimal step
Shorter step
Even shorter

κ = 10

5 0 5

2

1

0

1

2
Optimal step
Shorter step
Even shorter

100 101 102 103

number of iterations

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

d
is

ta
n
ce

 t
o
 o

p
ti

m
a
l
p
o
in

t

Optimal step
Shorter step
Even shorter

κ = 1.2

25-12

Gradient descent

Advantages

� Simple to implement and cheap to execute.

� Can be easily adjusted.

� Robust in the presence of noise and uncertainty.

Disadvantages

� Convergence is slow.

� Sensitive to conditioning. Even rescaling a variable can
have a substantial effect on performance!

� Not always easy to tune the stepsize.

Note: The idea of preconditioning (rescaling) before solving
adds another layer of possible customizations and tradeoffs.

25-13

Other first-order methods

Accelerated methods (momentum methods)

� Still a first-order method, but makes use of past iterates to
accelerate convergence. Example: the Heavy-ball method:

xk+1 = xk − αk∇f (xk) + βk(xk − xk−1)

Other examples: Nesterov, Beck & Teboulle, others.

� Can achieve substantial improvement over gradient descent
with only a moderate increase in computational cost

� Not as robust to noise as gradient descent, and can be
more difficult to tune because there are more parameters.

25-14

Other first-order methods
Mini-batch stochastic gradient descent (SGD)

� Useful if f (x) =
∑N

i=1 fi(x). Use direction
∑

i∈S ∇fi(xk)
where S ⊆ {1, . . . ,N}. Size of S determines “batch size”.
|S | = 1 is SGD and |S | = N is ordinary gradient descent.

� Same pros and cons as gradient descent, but allows further
tradeoff of speed vs computation.

� Industry standard for big-data problems like deep learning.

Nonlinear conjugate gradient

� Variant of the standard conjugate gradient algorithm for
solving Ax = b, but adapted for use in general optimization.

� Requires more computation than accelerated methods.

� Converges exactly in a finite number of steps when applied
to quadratic functions.

25-15

Newton’s method

Basic idea: approximate the function as a quadratic, move
directly to the minimum of that quadratic, and repeat.

� If we’re at xk , then by Taylor’s theorem:

f (x) ≈ f (xk)+∇f (xk)T(x−x0)+
1

2
(x−xk)T∇2f (xk)(x−xk)

� If ∇2f (xk) � 0, the minimum of the quadratic occurs at:

xk+1 := xopt = xk −∇2f (xk)−1∇f (xk)

� Newton’s method is a second-order method; it requires
computing the Hessian (second derivatives).

25-16

Newton’s method in 1D

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
3

3.2

3.4

3.6

3.8

4

4.2
Example: f (x) = log(ex+3 + e−2x+2)

starting at: x0 = 0.5

(x0, f0)

(x1, f1)

(x2, f2)

x
example by: L. El Ghaoui, UC Berkeley, EE127a 25-17

Newton’s method in 1D

−30 −20 −10 0 10 20 30

0

20

40

60 Example: f (x) = log(ex+3 + e−2x+2)

starting at: x0 = 1.5

divergent! x2 = 2.3× 106...

(x0, f0)

(x1, f1)

x
example by: L. El Ghaoui, UC Berkeley, EE127a 25-18

Newton’s method

Advantages

� It’s usually very fast. Converges to the exact optimum in
one iteration if the objective is quadratic.

� It’s scale-invariant. Convergence rate is not affected by any
linear scaling or transformation of the variables.

Disadvantages

� If n is large, storing the Hessian (an n × n matrix) and
computing ∇2f (xk)−1∇f (xk) can be prohibitively expensive.

� If ∇2f (xk) � 0, Newton’s method may converge to a local
maximum or a saddle point.

� May fail to converge at all if we start too far from the
optimal point.

25-19

Quasi-Newton methods

� An approximate Newton’s method that doesn’t require
computing the Hessian.

� Uses an approximation Hk ≈ ∇2f (xk)−1 that can be
updated directly and is faster to compute than the full
Hessian.

xk+1 = xk − Hk∇f (xk)

Hk+1 = g(Hk ,∇f (xk), xk)

� Several popular update schemes for Hk :

I DFP (Davidon–Fletcher–Powell)

I BFGS (Broyden–Fletcher–Goldfarb–Shanno)

25-20

Example

� f (x , y) = e−(x−3)/2 + e(x+4y)/10 + e(x−4y)/10

� Function is smooth, with a single minimum near (4.03, 0).

2 4 6 8
x

3

2

1

0

1

2

3

y

Gradient
Nesterov
BFGS
Newton

25-21

Example
Plot showing iterations to convergence:

100 101 102 103

number of iterations

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

d
is

ta
n
ce

 t
o
 o

p
ti

m
a
l
p
o
in

t

Gradient
Nesterov
BFGS
Newton

� Illustrates the complexity vs performance tradeoff.

� Nesterov’s method doesn’t always converge uniformly.

� Julia code: IterativeMethods.ipynb

25-22

http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/IterativeMethods.ipynb

Recap of local methods

Important: For any of the local methods we’ve seen, if
∇f (xk) = 0, then xk+1 = xk and we we won’t move!

cheap expensive

sl
ow

fa
st

Stochastic gradient descent

Gradient descent

Accelerated methods

Conjugate gradient

Quasi-Newton methods

Newton’s method

25-23

Constrained local optimization

Algorithms we’ve seen so far are designed for unconstrained
optimization. How do we deal with constraints?

� We’ll revisit interior point methods, and we’ll also talk
about a class of algorithms called active set methods.

� These are among the most popular methods for smooth
constrained optimization.

25-24

Interior point methods

minimize
x

f0(x)

subject to: fi(x) ≤ 0

Basic idea: augment the objective function using a barrier
that goes to infinity as we approach a constraint.

minimize
x

f0(x)− µ
m∑
i=1

log
(
−fi(x)

)

Then, alternate between (1) an iteration of an unconstrained
method (usually Newton’s) and (2) shrinking µ toward zero.

25-25

Interior point methods

−2 −1 0 1 2
0

1

2

3

4
Example:

f0(x) = 1
4
x2 + 1

with −2 ≤ x ≤ 2.

µ = 0.5

µ = 0.2

µ = 0.05

x
25-26

Active set methods

minimize
x

f0(x)

subject to: fi(x) ≤ 0

Basic idea: at optimality, some of the constraints will be
active (equal to zero). The others can be ignored.

� given some active set, we can solve or approximate the
solution of the simultaneous equalities (constraints not in
the active set are ignored). Approximations typically use
linear (LP) or quadratic (QP) functions.

� inequality constraints are then added or removed from the
active set based on certain rules, then repeat.

� the simplex method is an example of an active set method.

25-27

NLP solvers in JuMP

� Ipopt (Interior Point OPTimizer) uses an interior point
method to handle constraints. If second derivative information
is available, it uses a sparse Newton iteration, otherwise it uses
a BFGS or SR1 (another Quasi-Newton method).

� Knitro (Nonlinear Interior point Trust Region Optimization)
implements four different algorithms. Two are interior point
(one is algebraic, the other uses conjugate-gradient as the
solver). The other two are active set (one uses sequential LP
approximations, the other uses sequential QP approximations).

� NLopt is an open-source platform that interfaces with many
(currently 43) different solvers. Only a handful are currently
available in JuMP, but some are global/derivative-free.

25-28

NLopt solvers
http://ab-initio.mit.edu/wiki/index.php/NLopt Algorithms

LD_AUGLAG

LD_AUGLAG_EQ

LD_CCSAQ

LD_LBFGS_NOCEDAL

LD_LBFGS

LD_MMA

LD_SLSQP

LD_TNEWTON

LD_TNEWTON_RESTART

LD_TNEWTON_PRECOND

LD_TNEWTON_PRECOND_RESTART

LD_VAR1

LD_VAR2

LN_AUGLAG

LN_AUGLAG_EQ

LN_BOBYQA

LN_COBYLA

LN_NEWUOA

LN_NEWUOA_BOUND

LN_NELDERMEAD

LN_PRAXIS

LN_SBPLX

GD_MLSL

GD_MLSL_LDS

GD_STOGO

GD_STOGO_RAND

GN_CRS2_LM

GN_DIRECT

GN_DIRECT_L

GN_DIRECT_L_RAND

GN_DIRECT_NOSCAL

GN_DIRECT_L_NOSCAL

GN_DIRECT_L_RAND_NOSCAL

GN_ESCH

GN_ISRES

GN_MLSL

GN_MLSL_LDS

GN_ORIG_DIRECT

GN_ORIG_DIRECT_L

� L/G: local/global method

� D/N: derivative-based/derivative-free

� mostly implemented in C++, some work with Julia/JuMP

25-29

http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms

Global methods

A global method makes an effort to find a global optimum
rather than just a local one.

� If gradients are available, the standard (and obvious) thing
to do is multistart (also known as random restarts).

I Randomly pepper the space with initial points.

I Run your favorite local method starting from each point
(these runs can be executed in parallel).

I Compare the different local minima found.

� The number of restarts required depends on the size of the
space and how many local minima it contains.

25-30

Global methods

A global method makes an effort to find a global optimum
rather than just a local one.

� A more sophisticated approach:

I Systematically partition the space using a
branch-and-bound technique.

I Search the smaller spaces using local gradient-based search.

� Knowledge of derivatives is required for both the bounding
and local optimization steps.

25-31

Black-box methods

What if no derivative information is available and all we can
do is compute f (x)? We must resort to black-box methods
(also known as: derivative-free or direct search methods).

If f is smooth:

� Approximate the derivative numerically by using finite
differences, and then use a standard gradient-based method.

� Use coordinate descent: pick one coordinate, perform a line
search, then pick the next coordinate, and keep cycling.

� Stochastic Approximation (SA), Random Search (RS), and
others: pick a random direction, perform line search, repeat.

25-32

Black-box methods

What if no derivative information is available and f is not
smooth? (you’re usually in trouble)

Pattern search: Search in a grid and refine the grid adaptively in
areas where larger variations are observed.

Genetic algorithms: Randomized approach that simulates a
population of candidate points and uses a combination of mutation
and crossover at each iteration to generate new candidate points.
The idea is to mimic natural selection.

Simulated annealing: Randomized approach using gradient
descent that is perturbed in proportion to a temperature
parameter. Simulation continues as the system is progressively
cooled. The idea is to mimic physics / crystalization.

25-33

Optimization at UW–Madison

� Linear programming and related topics

I CS 525: linear programming methods

I CS 526: advanced linear programming

� Convex optimization and iterative algorithms

I CS 726: nonlinear optimization I

I CS 727: nonlinear optimization II

I CS 727: convex analysis

� MIP and combinatorial optimization

I CS 425: introduction to combinatorial optimization

I CS 577: introduction to algorithms

I CS 720: integer programming

I CS 728: integer optimization

25-34

External resources

Continuous optimization

� Lieven Vandenberghe (UCLA) http://www.seas.ucla.edu/∼vandenbe/

� Stephen Boyd (Stanford) http://web.stanford.edu/∼boyd/

� Ryan Tibshirani (CMU) http://stat.cmu.edu/∼ryantibs/convexopt/

� L. El Ghaoui (Berkeley) http://www.eecs.berkeley.edu/∼elghaoui/

Discrete optimization

� Dimitris Bertsimas (MIT) – integer programming
http://ocw.mit.edu/courses/sloan-school-of-management/15-083j-
integer-programming-and-combinatorial-optimization-fall-2009/

� AM121 (Harvard) – intro to optimization
http://am121.seas.harvard.edu/

25-35

http://www.seas.ucla.edu/~vandenbe/
http://web.stanford.edu/~boyd/
http://stat.cmu.edu/~ryantibs/convexopt/
http://www.eecs.berkeley.edu/~elghaoui/
http://ocw.mit.edu/courses/sloan-school-of-management/15-083j-integer-programming-and-combinatorial-optimization-fall-2009/
http://ocw.mit.edu/courses/sloan-school-of-management/15-083j-integer-programming-and-combinatorial-optimization-fall-2009/
http://am121.seas.harvard.edu/

	NLP algorithms
	Overview
	Local methods
	Constrained optimization
	Global methods
	Black-box methods
	Course wrap-up

